Learning for yourself, not for the teacher

Johanna Rämö University of Eastern Finland johanna.ramo@uef.fi

OSKA International Conference 2024 "The paradoxes of lifelong learning"

Introduce yourself to a new person sitting next to you

Discuss with your pair

What are the most important skills you have needed in your professional life?

0 %	10 %	30 %	50 %	70 %	90 %

Työelämässä tarvitsee

	63				26	8
52				37		
55				33		
50		1		26	1	8 3
53				30		10 4
35		<u> </u>	38		18	6
41			29		18	9
30		29		2	.8	4 7
33		25		24	6	8 5
20	30			29	4	13 3
41			22	15	j 9	8 4
18	33			26	9	9 4
25		10		22	7 /	1 12

Kyky oppia/omaksua uutta Itseohjautuvuus/oma-aloitteisuus Ongelmanratkaisutaidot Tiedonhankintataidot Analyyttisen, systemaattisen ajattelun taidot Yhteistyötaidot Stressinsietokyky Organisointi-/koordinointitaidot Tieto-/viestintätekniikan taidot Luovuus Englannin kielen viestintätaidot

Ability to learn new things

0% 10 % 30 % 50 % 70 % 90 %

Työelämässä tarvitsee

Kyky oppia/omaksua uutta Itseohjautuvuus/oma-aloitteisuus Ongelmanratkaisutaidot Tiedonhankintataidot Analyyttisen, systemaattisen ajattelun taidot Yhteistyötaidot Stressinsietokyky Organisointi-/koordinointitaidot Tieto-/viestintätekniikan taidot Luovuus Englannin kielen viestintätaidot

Ability to regulate own

actions

Työelämässä tarvitsee

ta		63		-		26	8
IS	5	2			37		8
ot		55			33		9
ot	50)			26	18	
ot	5	3			30		10
ot	35			38		18	
(y	41			29		18	9
ot	30		29		28		4
ot	33		25		24	6	8
IS	20	30			29	4	13
ot	41			22	15	9	8
n	18	33			26	9	9
at	25		10		22	7 1	1

Kyky oppia: maksua uutta Itseohjautuvuus/oma-aloitteisuus Ongelmanratkaisutaidot Tiedonhankintataidot Analyyttisen, systemaattisen ajattelun taidot Yhteistyötaidot Stressinsietokyky Organisointi-/koordinointitaidot Tieto-/viestintätekniikan taidot Luovuus Englannin kielen viestintätaidot

3 4 4

 \triangle

Theoretical		Työelä	mässä tar	vitsee	
knowledge in one's 0%	10 %	30 %	50 %	70 %	90 %
own field	<u> </u>	1			
🔨 🛛 Kyky oppia/omaksua uutta		63		26	8
Itsephjautuvuus/oma-aloitteisuus		52		37	8
Ongelmanratkaisutaidot		55		33	9
Tiedonhankintataidot		50		26	18 3
Analyyttisen, systemaattisen ajattelun taidot		53		30	10 4
Yhteistyötaidot	35		38		18 6
Stressinsietokyky	41		29	1	8 9
Organisoini-/koordinointitaidot	30		29	28	4 7
Tieto-/viestii tätekniikan taidot	33		25	24	6 8 5
Luovuus	20	30		29	4 13 3
Englannin kielen viestintätaidot	41		22	15	9 8 4
Oman alan teoreettinen osaaminen	18	33		26	9 9 4
Suemen kielen viestintäteidet	25		10	11	7 1 12

Traditional mathematics teaching in universities

- Lectures
- Homework
- Homework sessions
 - students take turns in
 presenting their solutions on
 the blackboard
- Assessment
 - exam

Traditional teaching in universities

- What skills do students learn?
 - Theoretical knowledge
 - Some problem solving but also lot of memorising
 - Not enough communication or cooperation skills

Traditional teaching in universities

- What skills do students learn?
 - Theoretical knowledge
 - Some problem solving but also lot of memorising
 - Not enough communication or cooperation skills
- What practices students take part in? Are they authentic in any way?
 - Sitting in a lecture for several hours
 - Working alone

Traditional teaching in universities

- What skills do students learn?
 - Theoretical knowledge
 - Some problem solving but also lot of memorising
 - Not enough communication or cooperation skills
- What practices students take part in? Are they authentic in any way?
 - Sitting in a lecture for several hours
 - Working alone
- What is assessed?
 - Theoretical knowledge

Aims

A lot of development

here in recent years!

- We need to teach students skills that are important to them in the future
- We need to assess those skills, not only theoretical knowledge

Aims

A lot of development

here in recent years!

• We need to teach students skills that are important to them in the future

We need to assess those skills, not only theoretical knowledge

Assessment has been more difficult to change

How have we tried to change the assessment culture?

Assessment should be viewed as a part of the learning environment

This is what our learning environment looks like:

Extreme Apprenticeship (XA)

- Students participate in activities that resemble those of experts
- Based on Cognitive Apprenticeship (Collins et al., 1991)

Image credit: Veikko Somerpuro

Extreme Apprenticeship (XA)

The methods scales up to courses with hundreds of students

Image credit: Veikko Somerpuro

Collaborative drop-in sessions several days a week

Tutor

Image credit: Veikko Somerpuro

Tutors are undergraduate/graduate students

Guide by asking questions

Model how experts work

Image credit: Susanna Oksanen

You can draw on all surfaces

Mathematical community made visible and accessible to both students and professors

20= 21

CD

000 + × 0CE- 180,

Results

Compared to traditional lecture-based teaching, the XA method supports **a better quality of learning**

- Students feel more competent
- More deep learning
- Less memorisation and fragmented learning

Lahdenperä, J., Postareff, L., & Rämö, J. (2019). Supporting Quality of Learning in University Mathematics: a Comparison of Two Instructional Designs

Summary

- We tried to make teaching as student-centred as possible
- Low hierarchies
- Authentic practices
- Students learn skills that are relevant to real-life

Summary

- We tried to make teaching as student-centred as possible
- Low hierarchies
- Authentic practices
- Students learn skills that are relevant to real-life

But...

Assessment

One thing remained – the examination

Discuss with your pair

- Think about a situation in which your skills have been assessed recently
- How were your skills assessed? What was the assessment method?

Argh, why is changing assessment so difficult!

- I had 400 students in my course
- I felt that the exam was a guarantee that my students knew enough

Argh, why is changing assessment so difficult!

- I had 400 students in my course
- I felt that the exam was a guarantee that my students knew enough

At the same time: "Assessment drives learning" (George Miller)

Assessment

- Traditional assessment has many drawbacks
 - Exam stress
 - Bulimic learning
 - "Exam strategies"
 - Challenges in producing fair exams
- Assessment has a huge impact on how students study

Au (2022). Unequal by design: High-stakes testing and the standardization of inequality Räisänen et al. (2016). Students' and Teacher's Experiences of the Validity and Reliability of Assessment in a Bioscience Course

"If tobacco smoking was invented today, it would not be permitted."

Norman H Tiffin, 2015

Canadian Journal of Respiratory Therapy

If our current assessment regime was invented today, would it be permitted?

Argh, why is changing assessment so difficult!

- I had 400 students in my course
- I felt that the exam was a guarantee that my students knew enough

Assessment of learning

Assessment for learning

Assessment is conducted with the intention of improving learning (Wiliam, 2001)

Assessment as learning

- Assessment is both a learning opportunity and an instance of evaluation
- Students' have an active and reflective role in the assessment process

Z. Yan, & L. Yang (Eds.), 2021. Assessment as Learning : Maximising Opportunities for Student Learning and Achievement

Our solution: self-assessment

For life-long learning, students should learn to assess their current skills with respect to their goals (Boud et al., 2010)

Context: the Finnish university education

- Teachers have full **autonomy** regarding the teaching and the assessment method
- Assessment is usually low-stakes
 - students can retake exams multiple times
 - grades do not play a big role in future studies or in getting a job

DISA, Digital Self-Assessment

Häsä, J. I. A., Rämö, J., & Nieminen, J. H. (2021). Supporting quality of learning by letting students give their own grades: An innovative self-assessment model in university mathematics.

Self-assessment is done with the support of a rubric

	Prerequisities	1-2	3-4	5
	l can determine the cosets (sivuluokat) of a subgroup.			
Quotient structures	l can view a quotient group (tekijäryhmä) as a group and handle its	I can calculate with cosets. I can, for example, determine the elements of the quotient group $S4/\langle (1234) \rangle$. I can also determine the elements of the subgroup generated by $(12)\langle (1234) \rangle$.	I calculate with cosets fluently.	
	other group (e.g. determine inverse elements and powers).	I can view cosets as equivalence classes, and know which equivalence relation defines them.	I can check whether an equivalence relation is compatible with a binary operation.	I can deduce the definitions of normal subgroup and ideal from the concept of binary operation
	I know how normal subgroups and quotient groups are	I can determine elements of a quotient ring.	I know why the equivalence relation needs to be compatible with a binary operation when defining a binary operation for	compatible with an equivalence relation.

Self-assessment is done with the support of a rubric

5

Mathematical discussion and collaboration

I can formulate precise questions when I do not understand something.

l can talk about mathematics to other people.

HARIDUS- JA

TEADUSMINISTEERIUM

Kaasrahastanur

Euroopa Liit

I present my solutions to other people.

I take part in mathematical discussions with my peers.

If I do not understand what other people say, I ask them to explain it again.

I collaborate with other people, listen to them and share my ideas with them.

Eesti

tuleviku heaks

Kompass

When talking to others about my mathematical thinking, I try to concentrate on the main ideas instead of technicalities.

I give feedback to others when their solutions are discussed.

When collaborating with others, I listen to other people's ideas, try to undestand them and use them in our collaboration.

Kutsekoda

I can summarise my solutions clearly, briefly and precisely.

I give constructive feedback to others so that they can improve their work. I can find something positive and meaningful to say in other people's work.

When discussing with other people I can take their position and feelings into consideration. I try to make the conversations meaningful to all parties.

Mathematical discussion and collaboration

I can formulate precise questions when I do not understand something.

I can talk about mathematics to other people. I present my solutions to other people.

I take part in mathematical excussions with my evers

I collaborate with other people, listen to them and share my ideas with them.

When the king to others about memathematical thinking, I try to concentrate on the main ideas instead of technicalities.

I give feedback to others when their solutions are discussed.

When collaborating with others, I listen to other people's ideas, try to undestand them and use them in our collaboration.

Kutsekoda

I can summarise my solutions clearly, briefly and precisely.

I give constructive feedback to others so that they can improve their work. I can find something positive and meaningful to say in other people's work.

When discussing with other people I can take their position and feelings into consideration. I try to make the conversations meaningful to all parties.

HARIDUS- JA TEADUSMINISTEERIUM Kaasrahastanu Europa Liit

Part of a rubric in a mathematics course

Communication and collaboration						
Basic skills	Intermediate skills	Advanced skills				
If I do not understand what another person says, I ask them to explain again	When talking to others, I try to concentrate on the main idea instead of technicalities	When presenting my ideas, I can summarise them clearly and concisely				
I collaborate with other people, listen to them and share my ideas with them	When collaborating, I try to understand other people's ideas and use them in our collaboration	When discussing with other people, I can take their positions and feelings into account				

 \triangle

Try self-assessment with your pair: What is your level? How do you know?

985 995 995

HARIDUS- JA

TEADUSMINISTEERIUM

Kaasrahastanu Euroopa Liit

Communication and collaboration				
Basic skills	Intermediate skills	Advanced skills		
If I do not understand what another person says, I ask them to explain again	When talking to others, I try to concentrate on the main idea instead of technicalities	When presenting my ideas, I can summarise them clearly and concisely		
I collaborate with other people, listen to them and share my ideas with them	When collaborating, I try to understand other people's ideas and use them in our collaboration	When discussing with other people, I can take their positions and feelings into account		

Kompass

Kutsekoda

• • •

How we have used the DISA self-assessment model

- Students practice self-assessment during a course
- At the end of a course, they look back to the self-assessment exercises they have done and reflect their development
- Teacher grades their reflections based on the deepness of the reflection

Noticing own skills

- Students practice self-assessment during a course
- At the end of a course, they look back to the self-assessment exercises they have done and reflect their development
- Teacher grades their reflections based on the deepness of the reflection

Noticing own skills

Noticing

development

- Students practice self-assessment during a course
- At the end of a course, they look back to the self-assessment exercises they have done and reflect their development
- Teacher grades their reflections based on the deepness of the reflection

Noticing own skills

Noticing

Verbalising

own skills

development

- Students practice self-assessment during a course
- At the end of a course, they look back to the self-assessment exercises they have done and reflect their development
- Teacher grades their reflections based on the deepness of the reflection

Instructions for writing a self-assessment reflection

For each of the topics in the rubric, use the following as your guiding questions:

- What kind of development has taken place?
- What do you know / do not know?
- How do you know you master / do not master a skill?
- What has helped you learn the skills?

The most important factors in getting employed

The most important factors in getting employed

- Students do self-assessment exercises during a course
- One-on-one assessment discussions with the teacher mid-course and at the end of the course
- No exam. Students give their own grades at the end of the course

- Students do self-assessment exercises during a course
- One-on-one assessment discussions with the teacher mid-course and at the end of the course
- No exam. Students give their own grades at the end of the course

 HARIDUS-JA
TEADUSMINISTEERIUM
 Image: Augusta and Burgeria a

Students can improve their self-assessment

skills

- Students do self-assessment exercises during a course
- One-on-one assessment discussions with the teacher mid-course and at the end of the course
- No exam. Students give their own grades at the end of the course

HARIDUS- JA TEADUSMINISTEERIUM Kaasrahastanud Euroopa Liit

Students can improve their self-assessment skills

Students are heard

- Students do self-assessment exercises during a course
- One-on-one assessment discussions with the teacher mid-course and at the end of the course
- No exam. Students give their own grades at the end of the course

Students can improve their self-assessment

skills

Students are heard

- Students do self-assessment exercises and get automated feedback from the digital DISA tool
- The students **give their own grades** at the end of the course
- The teacher can intervene if students self-assessment does not align at all with the work they had done

In a large class,

digital tools help

- Students do self-assessment exercises and get automated feedback from the digital DISA tool
- The students **give their own grades** at the end of the course
- The teacher can intervene if students self-assessment does not align at all with the work they had done

Results on DISA self-assessment

- Increases deep learning
- Students feel that they study for themselves

Nieminen, J. H., Asikainen, H., & Rämö, J. (2021). Promoting deep approach to learning and self-efficacy by changing the purpose of self-assessment: a comparison of summative and formative models

Nieminen, J. H., & Tuohilampi, L. (2020). 'Finally studying for myself'–examining student agency in summative and formative self-assessment models

Students reflections on self-assessment

"Now I didn't focus on memorising things. Instead, I focused on **understanding** the topics, so that in the future, if necessary, I can use them / re-learn them quickly."

"[...] I think that there wasn't any **bulimic learning**. I remember the content better. "

"[...] the exam measures just content knowledge. In self-assessment, **also other kinds of skills are considered**."

"Wild hippie vibes"

"When I was doing those self-assessment tasks, I felt like now I'm **finally studying for myself**.

"If I'm studying for an exam, I often feel like now I'm studying for that exam. And for the fact that I would get a good grade. Now I felt more like I would have been learning to be able to **use these skills in the future**."

Should we ban exams altogether?

 \triangle

Self-evident...

If I am taken ill I want to see a doctor who has taken exams and passed them

... but also:

I want doctors to be able to assess very well what they know and don't know

Concluding remarks

- Self-assessment skills are important in life.
 Students need to have an opportunity to practice them
- Also the students should have ownership over their assessment, not only the teacher
- If we only use teacher-led evaluation, it can solidify students' belief that they are not capable of assessing their own learning

Thank you!

johanna.ramo@uef.fi

