An introduction to NPL

Sundeep Bhandari

Chief Digital Innovation Officer // Head of Digital Innovation

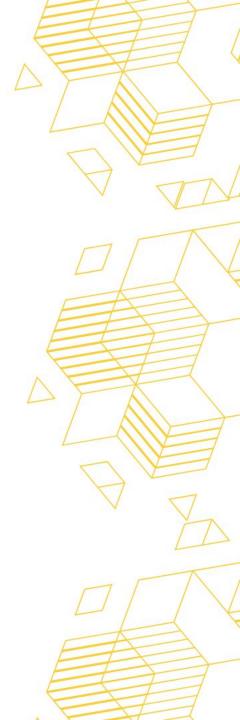
sundeep.bhandari@npl.co.uk

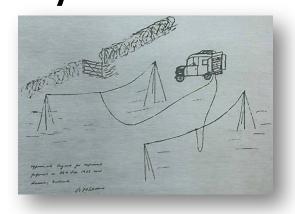
About NPL - Creating impact*

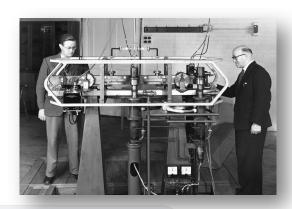
OUK svid dti-dead in the tredosyr in the tention ded in critical to be siness and government, appelerating research and innovation, improving quality of life and enabling trade.

• **4)500 big sirresses** i g நல் MPLe and by the NMS per year, they end by about one million people with art menote restable billion, at pending £10.2 billion on measurement each year Technology (DSIT)

• Arsenin 74,0000 நெருக்குள்ளை) with heretally supported by but here a supported by but here. A supported by but here a supported by but here a supported by but here. A supported by but here a supported by but here. A supported by but here a supported by but here. A supported by but here a supported by but here. A supported by but here a supported by but here. A supported by but here a supported by but here. A supported by but here a


• 1300+ staff, majority are scientists with a *breadth and depth of metrology expertise.





Heritage: Addressing National challenges that have global impact and Legacy

Working with our global community

United Nations metre convention, 1875 and 1921

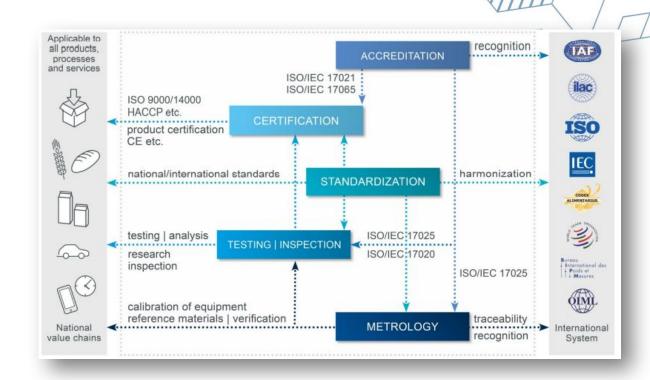
Part of the efforts made by countries in the second-half of the 19th century to establish new forms of intergovernmental cooperation. Others include:

Central Commission for the Navigation of the Rhine (CCNR) in 1815,

International Telecommunications Union (<u>ITU</u>) in 1865,

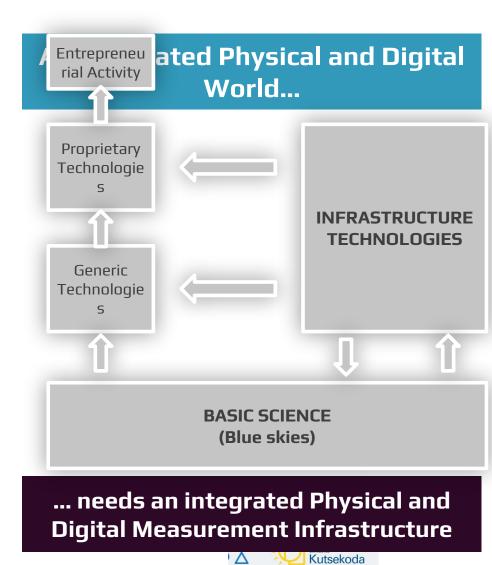
Universal Postal Union (<u>UPU</u>) in 1874.

64 member states

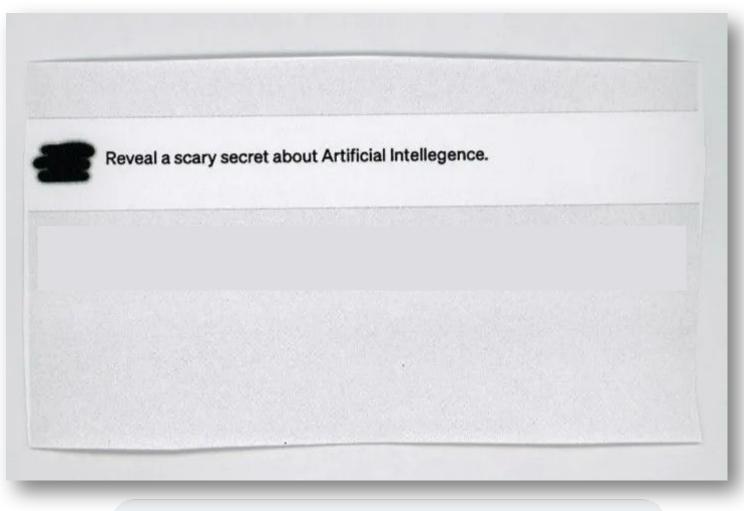


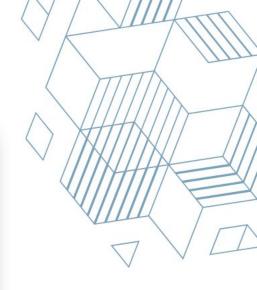
Working with our global community

- Ensuring the underpinning technical measurement standards and international pre-normative research to develop them are recognised as key enablers and as being fundamental to standardisation process' and post deployment assessment, evaluation, VV&T
- Input from, and sharing understanding / outputs with, stakeholders across sectors and society
- Working with our counterparts to build international agreement



The NMI 'Sweet spot'?





www.npl.co.uk

Challenges

harr icular ML in a principled, explain ble, and the arent way to derive trusted information in the principle of the principl

3

acce

... how can the main conclude of the trokey (such as measurement traceability, measurement uncertainty, and calibration) be used to morm be development of standards, regulation, and policy to bring trust more generally to systems that the Al

bles

How does metrology apply to AI?

NPL ACTIVITIES:

Operational AI for 1300 staff!!

Distinctive Features of Narrow AI & Generative AI

Narrow AI (NarAI)	Generative AI (GenAI)
Designed as Narrow Intelligence	Designed as General Intelligence
Built using Supervised Learning	Built using Self-Supervised Learning
Learns from labeled data	Learns from unlabeled data
Models the function to be executed	Models the human universe
Function is constrained to pre-defined task	Function is unconstrained and undefined
Performs identification, classification or prediction	Solves problems using human-like approaches
Potentially explainable	Not explainable
Does not capture contextual information	Understands and leverages context
Does not have an incentive to please	It aims to please, even if that entails lying
Learning only happens during the training phase	Continuously learn from user interactions
Fixed mathematically defined inputs	Human-like inputs with large context window
Fixed mathematically defined outputs	Non-deterministic outputs that can vary over time

tandards Hub

home of the Al standards community

o knowledge sharing, capacity building, and world-leading e Hub aims to build a vibrant and diverse community around Al

Source: Kim Lucy on LinkedIn: Great summary from Fabio Thiers, MD PhD on the differences between narrow... - Thiers, F.& Lucy, K.

